Variation in Anatomical and Material Properties Explains Differences in Hydrodynamic Performances of Foliose Red Macroalgae (rhodophyta)(1).

نویسندگان

  • Kyle W Demes
  • Emily Carrington
  • John Gosline
  • Patrick T Martone
چکیده

Over the last two decades, many studies on functional morphology have suggested that material properties of seaweed tissues may influence their fitness. Because hydrodynamic forces are likely the largest source of mortality for seaweeds in high wave energy environments, tissues with material properties that behave favorably in these environments are likely to be selected for. However, it is very difficult to disentangle the effects of materials properties on seaweed performance because size, shape, and habitat also influence mechanical and hydrodynamic performance. In this study, anatomical and material properties of 16 species of foliose red macroalgae were determined, and their effects on hydrodynamic performance were measured in laboratory experiments holding size and shape constant. We determined that increased blade thickness (primarily caused by the addition of medullary tissue) results in higher flexural stiffness (EI), which inhibits the seaweed's ability to reconfigure in flowing water and thereby increases drag. However, this increase is concurrent with an increase in the force required to break tissue, possibly offsetting any risk of failure. Additionally, while increased nonpigmented medullary cells may pose a higher metabolic cost to the seaweed, decreased reconfiguration causes thicker tissues to expose more photosynthetic surface area incident to ambient light in flowing water, potentially ameliorating the metabolic cost of producing these cells. Material properties can result in differential performance of morphologically similar species. Future studies on ecomechanics of seaweeds in wave-swept coastal habitats should consider the interaction of multiple trade-offs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kelp versus Coralline: Cellular Basis for Mechanical Strength in the Wave-swept Seaweed Calliarthron (corallinaceae, Rhodophyta)

Previous biomechanical studies of wave-swept macroalgae have revealed a trade-off in growth strategies to resist breakage in the intertidal zone: growing in girth versus growing strong tissues. Brown macroalgae, such as kelps, grow thick stipes but have weak tissues, while red macroalgae grow slender thalli but have much stronger tissues. For example, genicular tissue in the articulated coralli...

متن کامل

Biological Functions and Health Promoting Effects of Brown Seaweeds in Swine Nutrition

Recently, prophylactic use of antibiotics in livestock have been banned by European Community with the consequence of a growing research towards new, safe and natural ingredients, like plant extract, that would have antimicrobial properties [1]. In this context, seaweed extracts have assumed great importance in animal nutritionfor the high content in bioactive molecules [2]. Seaweed or marine m...

متن کامل

Spatial and Temporal Variation of Macroalgae along the Southern Coasts of the Caspian Sea Relating to Environmental Parameters

Macroalgae are considered as primary producers in ecosystem food chain. This study investigated spatial and temporal variation of three species of macroalgae namely, Laurencia caspica (red macroalga) Enteromorpha intestinalis and Cladophora glomerata (green macroalgae) on the hard substrates of the southern Caspian Sea coasts and their relation with environmental factors. Seasonal sampling pref...

متن کامل

The effect of organic ligands exuded by intertidal seaweeds on copper complexation.

Copper complexation in marine systems is mainly controlled by organic matter, partially produced by micro- and macroalgae that release exudates with the capacity to bind metals. This feature is important as it influences bioavailability, bioaccumulation, toxicity, and transport of copper through biological membranes. The release of Cu-complexing ligands by seaweeds cultured under copper excess ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of phycology

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2011